KBQA: Learning Question Answering over QA Corpora and Knowledge Bases
نویسندگان
چکیده
Question answering (QA) has become a popular way for humans to access billion-scale knowledge bases. Unlike web search, QA over a knowledge base gives out accurate and concise results, provided that natural language questions can be understood and mapped precisely to structured queries over the knowledge base. The challenge, however, is that a human can ask one question in many different ways. Previous approaches have natural limits due to their representations: rule based approaches only understand a small set of “canned” questions, while keyword based or synonym based approaches cannot fully understand the questions. In this paper, we design a new kind of question representation: templates, over a billion scale knowledge base and a million scale QA corpora. For example, for questions about a city’s population, we learn templates such as What’s the population of $city?, How many people are there in $city?. We learned 27 million templates for 2782 intents. Based on these templates, our QA system KBQA effectively supports binary factoid questions, as well as complex questions which are composed of a series of binary factoid questions. Furthermore, we expand predicates in RDF knowledge base, which boosts the coverage of knowledge base by 57 times. Our QA system beats all other state-of-art works on both effectiveness and efficiency over QALD benchmarks.
منابع مشابه
KBQA: An Online Template Based Question Answering System over Freebase
Question answering (QA) has become a popular way for humans to access billion-scale knowledge bases. QA systems over knowledge bases produce accurate and concise answers. The key of QA over knowledge bases is to map the question to a certain substructure in the knowledge base. To do this, KBQA (Question Answering over Knowledge Bases) uses a new kind of question representation: templates, learn...
متن کاملImproved Neural Relation Detection for Knowledge Base Question Answering
Relation detection is a core component of many NLP applications including Knowledge Base Question Answering (KBQA). In this paper, we propose a hierarchical recurrent neural network enhanced by residual learning which detects KB relations given an input question. Our method uses deep residual bidirectional LSTMs to compare questions and relation names via different levels of abstraction. Additi...
متن کاملCASE-QA: Context and Syntax embeddings for Question Answering On Stack Overflow
Question answering (QA) systems rely on both knowledge bases and unstructured text corpora. Domain-specific QA presents a unique challenge, since relevant knowledge bases are often lacking and unstructured text is difficult to query and parse. This project focuses on the QUASAR-S dataset (Dhingra et al., 2017) constructed from the community QA site Stack Overflow. QUASAR-S consists of Cloze-sty...
متن کاملJoint Relational Embeddings for Knowledge-based Question Answering
Transforming a natural language (NL) question into a corresponding logical form (LF) is central to the knowledge-based question answering (KB-QA) task. Unlike most previous methods that achieve this goal based on mappings between lexicalized phrases and logical predicates, this paper goes one step further and proposes a novel embedding-based approach that maps NL-questions into LFs for KBQA by ...
متن کاملLC-QuAD: A Corpus for Complex Question Answering over Knowledge Graphs
Being able to access knowledge bases in an intuitive way has been an active area of research over the past years. In particular, several question answering (QA) approaches which allow to query RDF datasets in natural language have been developed as they allow end users to access knowledge without needing to learn the schema of a knowledge base and learn a formal query language. To foster this r...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- PVLDB
دوره 10 شماره
صفحات -
تاریخ انتشار 2017